

Niveau:			MASTER			année						
Domaine :		Science	s, Technologies	s, Santé		B. A. 4						
Mention:		Chimie Moléculaire										
Parcours :	Т	2MC: Transitio	n Metals in Mole	ecular Chemistr	у	60 ECTS						
Volume horaire étudiant :	238 h	176 h	102 h	0 h	De 3 à 5 mois	516 h						
	cours magistraux	urs magistraux travaux dirigés travaux pratiques cours intégrés stage										
Formation dispensée en :	☐ fr	☐ français ☐ anglais										

Contacts:

Responsab	les de formation	Scolarité – secrét	ariat pédagogique
Richard DECRÉAU	Ewen BODIO	Pauline GIRARD	Anne GAGNEPAIN
Maître de conférences	Professeur des	Assistante ingénieure	Département de Chimie
2 03.80.39.90.46	Universités	Gestion administrative et communication (50%)	Gestion administrative et pédagogique
Richard.Decreau@u-	2 03.80.39.60.76	2 03.80.39.60.87	
bourgogne.fr	Ewen.Bodio@u-bourgogne.fr	Pauline.girard@u-bourgogne.fr	☎ 03.80.39.60.95
			anne.gagnepain@u- bourgogne.fr
Composan	te(s) de rattachement :		UFR Sciences et Techniques

Objectifs de la formation et débouchés :

■ Objectifs:

Le Master Mention « Chimie Moléculaire » parcours « Transition Metals in Molecular Chemistry » (T2MC) a pour objectifs de former des cadres capables de gérer les différents aspects recherche, développement et/ou organisationnel d'un projet orienté vers la chimie moléculaire, qui soient sensibilisés aux contraintes modernes de la chimie (économie de matière et d'énergie, respect de la sécurité des personnes, de l'environnement et des biens). Cette offre de formation, adossée aux activités de recherche de l'ICMUB (UMR CNRS 6302) et de l'UTINAM (UMR CNRS 6213) est orientée vers les domaines de la chimie organométallique et de coordination et leur utilisation pour une chimie propre et un développement durable. Elle permettra également aux étudiants de se former aux applications de la chimie moléculaire dans le domaine de l'imagerie médicale, nouvel axe de recherche développé à l'ICMUB.

La formation est dispensée en langue anglaise (exceptée l'UE5.3) afin de pouvoir accueillir les étudiants internationaux et en particulier ceux issus du master M1 « Master of Science in Applied Chemistry » de l'Université de Chimie et Technologie de Prague (UCT Prague). Cet enseignement en anglais favorisera l'intégration de nos étudiants au marché du travail de plus en plus mondialisé. La deuxième année de master est également ouverte à la formation continue afin de permettre aux personnes ayant déjà intégré le monde professionnel d'acquérir de nouvelles compétences afin de se spécialiser ou de se réorienter.

Mai 2021 1

■ Débouchés du diplôme (métiers ou poursuite d'études) :

Cette formation s'adresse à tous les secteurs d'activités concernés par les sciences chimiques ou pharmaceutiques. Afin de favoriser l'ouverture au monde industriel, les étudiants peuvent choisir d'effectuer la deuxième année de master en alternance (contrat de professionnalisation).

Les débouchés principaux du parcours T2MC sont :

- La préparation d'une thèse de doctorat au sein d'un établissement d'enseignement supérieur, français ou étranger, conduisant aux métiers de chercheur, dans l'industrie ou dans les centres de recherche publics, et d'enseignant-chercheur.
- La réponse aux offres d'emplois de cadres de niveau ingénieur, en recherche et développement, en contrôle, en fabrication ou sur des fonctions supports.
- Compétences acquises à l'issue de la formation :

Cette formation s'efforce de favoriser la compréhension en profondeur des problèmes scientifiques, de développer les initiatives et les responsabilités. Elle permet à l'étudiant de s'intégrer plus facilement dans les secteurs d'activités nécessitant un haut niveau de formation scientifique pour obtenir des gains de productivité, une économie de matière ou un contrôle de la qualité, tant au niveau du laboratoire qu'au stade de la production. Cette formation propose un enseignement général (chimie organique, chimie inorganique, chimie analytique, spectroscopie, électrochimie, outils informatiques, sciences humaines, anglais) et permet d'acquérir de solides connaissances et une bonne maîtrise dans les domaines de la chimie moléculaire en relation avec les métaux de transition (synthèse organique et organométallique, chimie de coordination, modélisation et mécanismes réactionnels, catalyse).

■ Compétences acquises à l'issue de l'année de formation :

Cette première année de master permet d'acquérir ou de conforter des compétences en chimie moléculaire (organique, organométallique, inorganique, analytique, électrochimique et spectroscopie). Un accent est mis sur l'apprentissage du travail en équipe et sur la formation pratique des étudiants. Les étudiants peuvent profiter du Master 1 pour effectuer leur stage d'initiation à la recherche à l'étranger ou dans l'industrie et se familiariser ainsi avec la recherche dans un environnement international/industriel.

Modalités d'accès à l'année de formation :

Peuvent accéder :

- les étudiants titulaires d'une licence scientifique dans un domaine compatible avec celui du diplôme de Master : chimie, sciences physiques, biochimie ou diplôme équivalent dans la limite des places disponibles sur sélection. Les candidatures seront évaluées en fonction de la qualité du dossier scolaire, de la motivation pour la formation et du projet professionnel du candidat(e).
- par validation d'acquis, sur sélection

En formation continue : s'adresser au service de formation continue de l'université (SEFCA). Le parcours T2MC est ouvert aux candidats pouvant bénéficier du régime de la formation continue, sous réserve d'éventuelles validations d'acquis (VA) ou validation des acquis de l'expérience (VAE).

La capacité d'accueil du Master au niveau de la première année est de 25 étudiants.

Un niveau B2 en anglais est requis pour intégrer ce master. Après examen des fiches de pré-inscription déposées dans les délais mentionnés, un avis d'orientation sera donné par le Conseil Pédagogique du Master qui vérifiera que le cursus antérieur de l'étudiant lui a bien permis d'acquérir les prérequis indispensables à sa réussite en cursus master. Les candidats pourront être éventuellement auditionnés. Posséder des notions de français est souhaitable, dans le cas contraire, il sera proposé à l'étudiant de recevoir des cours de français en plus des cours du M1.

Organisation et descriptif des études :

■ Schéma général des parcours possibles :

Le master Chimie Moléculaire - parcours T2MC, adossé aux activités de recherche de l'ICMUB (UMR CNRS 6302) et de l'UTINAM (UMR CNRS 6213), offre une formation en Chimie moléculaire. Ce parcours est l'unique parcours du master Chimie moléculaire. Il est offert la possibilité à quelques étudiants sélectionnés de suivre le master M1 « Master of Science in Applied Chemistry » de l'Université de Chimie et Technologie de Prague (UCT Prague), qui en cas de validation du M1 à Prague, du M2 à Dijon et de l'oral de fin d'étude leur permettra d'obtenir le diplôme de Master de « Master of Science in Applied Chemistry » de l'UCT Prague et le diplôme de « Master in molecular chemistry » parcours T2MC de l'UBFC.

Une partie des cours pourra être proposée en distanciel.

- tableau de répartition des enseignements et des contrôles de connaissances assortis : La formation M1 est composée :
- **au premier semestre** de 4 UE (6 ECTS chacune) d'enseignement fondamental en chimie et d'une UE de compétences transversales (6 ECTS) (projet tutoré et documentation)
- **au deuxième semestre** de 4 UE (5 ECTS chacune) d'enseignement spécialisé et appliqué et d'un stage d'une durée de 3 à 5 mois (stage en entreprise ou dans un laboratoire académique, 10 ECTS).
- Dans le cadre de la labellisation par une graduate school, des enseignements d'autres masters de la graduate school pourront se substituer à une partie des enseignements du master T2MC (attention, ces choix sont soumis à validation préalable des responsables du master T2MC).

SEMESTRE 1

UE 1	СМ	TD	TP	Total	ECTS	Type éval (1) Session 1	Type éval ⁽¹⁾ Session 2	coeff CT	coeff CC	total coef
Organic chemistry	20	20	20	60	6	CT, CC	СТ	4	2	6
TOTAL UE	20	20	20	60	6					6

⁽¹⁾ CC : contrôle continu - CT : contrôle terminal - EP : Epreuve pratique - O : oral

UE2*	СМ	TD	TP	Total	ECTS	Type éval (1) Session 1	Type éval (1) Session 2	coeff CT	coeff CC		total coef
Inorganic chemistry	18	16	16	50	6	CT, CC, EP	СТ	2	2	2	6
TOTAL UE	18	16	16	50	6						

^{*}mutualisation avec le parcours M1 CDM

UE3	discipline	СМ	TD	TP	Total	ECTS	Type éval (1) Session 1	Type éval (1) Session 2	coeff CT	coeff CC	total coef
	UE3.1* NMR Spectroscopy	14**	10		24	3	CT, CC	СТ	2	1	3
NMR and optical spectroscopy	UE3.2* Optical Spectroscopy	10**	6		16	2	CC			2	2
	UE3.3a Molecular Spectroscopy	10**	10		10	1	CC			1	1
TOTAL UE	•	34	26		60	6					6

^{*}mutualisation avec le parcours M1 CDM

^{**} mutualisation avec le parcours M1 Innovative Drugs

UE4*	discipline	СМ	TD	TP	Total	ECTS	Type éval (1) Session 1	Type éval (1) Session 2	coeff CT	coeff CC	coeff EP	total coef
	UE4.1 Introduction to polymer	16	14		30	3	CT, CC, EP	СТ	2	1		3
Polymer	UE4.2# Polymerization catalysis	10			10	1,5	CC			1,5		1,5
chemistry	UE4.3# Organic and inorganic materials	10			10	1,5	CC			1,5		1,5
	UE4.4# Polymerization characterization			10	10	1,5	CC			1,5		1,5
TOTAL UE	M 00H ++ M 04	26	14	10	50	6						6

^{*}mutualisation avec le parcours M1 CDM et M2 CAC

#chaque étudiant devra choisir 2 sous-UE parmi les sous-UE 4.2, 4.3 et 4.4 $\,$

UE5	discipline	СМ	TD	TP	Total	ECTS	Type éval (1) Session 1	Type éval ⁽¹⁾ Session 2	coeff CT	coeff CC	coeff EP	total coef
	UE5.1 Write and present scientific documents in English	4	16		20	1	CC			1		1
Transversal courses	UE5.2 Documentation scientifique - insertion professionnelle*	10	10		20	3	CC	CC		3		3
	UE5.3 Handling of organometallic and sensitive products			40	40	2	CC			2		2
TOTAL UE		14	26	40	80	6						6

*mutualisation avec le parcours M1 CDM

TOTAL S1	112	102	86	300	30			30

SEMESTRE 2

UE6	discipline	СМ	TD	TP	Total	ECTS	Type éval (1) Session 1	Type éval (1) Session 2	coeff CT	coeff CC	coeff EP	total coef
Electro-	UE6.1* Electrochemical Kinetics	10	8		18	1.5	CC			1.5		1.5
chemistry & photochemistry	UE6.2 Electrochemical methods	10	6	16	32	2.5	CT, EP	СТ	1.25		1.25	2.5
	UE6.3 Photochemistry	10			10	1	СС			1		1
TOTAL UE		30	14	16	60	5						5

*mutualisation avec le parcours M1 CDM

UE7	discipline	СМ	TD	TP	Total	ECTS	Type éval (1) Session 1	Type éval ⁽¹⁾ Session 2	coeff CT	coeff CC	total coef
Modeling and	UE7.1 Molecular modeling	18	12		30	2.5	CT, CC	СТ	1.75	0.75	2.5
reactivity	UE7.2 Reactivity	12	8		20	2.5	CT, CC	СТ	1.75	0.75	2.5
TOTAL UE		30	20		50	5					5

UE8	СМ	TD	TP	Total	ECTS	Type éval ⁽¹⁾ Session 1	Type éval ⁽¹⁾ Session 2	coeff CT	coeff CC	total coef
Organometallic chemistry and catalysis	30	20		50	5	CT, CC	СТ	3.5	1.5	5
TOTAL UE	30	20		50	5					5

UE9*	СМ	TD	TP	Total	ECTS	Type éval ⁽¹⁾ Session 1	Type éval ⁽¹⁾ Session 2	coeff CT	coeff CC	total coef
Bimolecules chemistry	36	20		56	5	CC			5	5
TOTAL UE	36	20		56	5					5

^{*}mutualisation avec le master Innovative drugs à partir de la rentrée 2020

UE10	СМ	TD	TP	Total	ECTS	Type éval ⁽¹⁾ Session 1	Type éval ⁽¹⁾ Session 2	coeff CT	coeff CC	total coef
Stage					10	CC			10	10
TOTAL UE					10					10

TOTAL S2	126	74	16	216	30		30

■ Modalités de contrôle des connaissances :

Les connaissances sont évaluées et les examens se déroulent dans le respect adopté par le conseil d'administration de l'université de Bourgogne :

https://ub-link.u-bourgogne.fr/wp-content/uploads/REFER commun des etudes.pdf

Sessions d'examen

1ère session : janvier pour le semestre S1 – mars/avril pour le semestre S2

2ème session : septembre (semestres S1 et S2). A la fin du semestre S1 et du semestre S2 (avant la période de stage) un examen est organisé pour chaque unité d'enseignement comportant un contrôle terminal. A l'issue du stage à la fin du semestre S2, les étudiants sont notés sur un rapport de stage écrit et un exposé oral. La note de stage prendra en compte la maîtrise des concepts, le travail effectué, une évaluation fournie par l'encadrant, les qualités du mémoire et de la présentation orale, et la pertinence des réponses aux questions posées par le jury.

• Règles de validation et de capitalisation :

Principes généraux :

COMPENSATION:

Une compensation s'effectue au niveau de chaque semestre. La note semestrielle est calculée à partir de la moyenne des notes des UEs du semestre affectées des coefficients. Le semestre est validé si la moyenne générale des notes des UEs pondérées par les coefficients est supérieure ou égale à 10 sur 20.

CAPITALISATION:

Chaque unité d'enseignement est affectée d'une valeur en crédits européens (ECTS). Une UE est validée et capitalisable, c'est-à-dire définitivement acquise lorsque l'étudiant a obtenu une moyenne pondérée supérieure ou égale à 10 sur 20 par compensation entre chaque matière de l'UE. Chaque UE validée permet à l'étudiant d'acquérir les crédits européens correspondants. Si les éléments (matières) constitutifs des UE non validées ont une valeur en crédits européen, ils sont également capitalisables lorsque les notes obtenues à ces éléments sont supérieures ou égales à 10 sur 20.